前幾年,語音交互應用最為普遍的就是以Siri為代表的智能手機,這個場景一般都是采用單麥克風系統。
單麥克風系統可以在低噪聲、無混響、距離聲源很近的情況下獲得符合語音識別需求的聲音信號。但是,若聲源距離麥克風距離較遠,并且真實環境存在大量的噪聲、多徑反射和混響,導致拾取信號的質量下降,這會嚴重影響語音識別率。而且,單麥克風接收的信號,是由多個聲源和環境噪聲疊加的,很難實現各個聲源的分離。這樣就無法實現聲源定位和分離,這很重要,因為還有一類聲音的疊加并非噪聲,但是在語音識別中也要抑制,就是人聲的干擾,語音識別顯然不能同時識別兩個以上的聲音。
為什么需要麥克風陣列?
消費級麥克風陣列的興起得益于語音交互的市場火熱,主要解決遠距離語音識別的問題,以保證真實場景下的語音識別率。這涉及了語音交互用戶場景的變化,當用戶從手機切換到類似Echo智能音箱或者機器人的時候,實際上麥克風面臨的環境就完全變了,這就如同兩個人竊竊私語和大聲嘶喊的區別。
麥克風陣列還僅是物理入口,只是完成了物理世界的聲音信號處理,得到了語音識別想要的聲音,但是語音識別率卻是在云端測試得到的結果,因此這兩個系統必須匹配在一起才能得到最好的效果。
麥克風陣列的關鍵技術
消費級的麥克風陣列主要面臨環境噪聲、房間混響、人聲疊加、模型噪聲、陣列結構等問題,若使用到語音識別場景,還要考慮針對語音識別的優化和匹配等問題。為了解決上述問題,特別是在消費領域的垂直場景應用環境中,關鍵技術就顯得尤為重要。
噪聲抑制
語音識別倒不需要完全去除噪聲,相對來說通話系統中需要的技術則是噪聲去除。這里說的噪聲一般指環境噪聲,比如空調噪聲,這類噪聲通常不具有空間指向性,能量也不是特別大,不會掩蓋正常的語音,只是影響了語音的清晰度和可懂度。這種方法不適合強噪聲環境下的處理,但是應付日常場景的語音交互足夠了。
混響消除
混響在語音識別中是個蠻討厭的因素,混響去除的效果很大程度影響了語音識別的效果。我們知道,當聲源停止發聲后,聲波在房間內要經過多次反射和吸收,似乎若干個聲波混合持續一段時間,這種現象叫做混響。混響會嚴重影響語音信號處理,比如互相關函數或者波束主瓣,降低測向精度。
聲源測向
這里沒有用聲源定位,測向和定位是不太一樣的,而消費級麥克風陣列做到測向就可以了,沒必要在這方面投入太多成本。聲源測向的主要作用就是偵測到與之對話人類的聲音以便后續的波束形成。聲源測向可以基于能量方法,也可以基于譜估計,陣列也常用TDOA技術。聲源測向一般在語音喚醒階段實現,VAD技術其實就可以包含到這個范疇,也是未來功耗降低的關鍵研究內容。
波束形成
波束形成是通用的信號處理方法,這里是指將一定幾何結構排列的麥克風陣列的各麥克風輸出信號經過處理(例如加權、時延、求和等)形成空間指向性的方法。波束形成主要是抑制主瓣以外的聲音干擾,這里也包括人聲,比如幾個人圍繞Echo談話的時候,Echo只會識別其中一個人的聲音。
陣列增益
這個比較容易理解,主要是解決拾音距離的問題,若信號較小,語音識別同樣不能保證,通過陣列處理可以適當加大語音信號的能量。
模型匹配
這個主要是和語音識別以及語義理解進行匹配,語音交互是一個完整的信號鏈,從麥克風陣列開始的語音流不可能割裂的存在,必然需要模型匹配在一起。實際上,效果較好的語音交互專用麥克風陣列,通常是兩套算法,一套內嵌于硬件實時處理,另外一套服務于云端匹配語音處理。